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Structural disorder at the scale of two to three atomic positions around the probe nucleus results in vari-
ations of the EFG and thus in a distribution of the quadrupolar interaction. This distribution is at the ori-
gin of the lineshape tailing toward high fields which is often observed in the MAS NMR spectra of
quadrupolar nuclei in disordered solids. The Czjzek model provides an analytical expression for the joint
distribution of the NMR quadrupolar parameters tQ and g from which a lineshape can be predicted. This
model is derived from the Central Limit Theorem and the statistical isotropy inherent to disorder. It is
thus applicable to a wide range of materials as we have illustrated for 27Al spectra on selected examples
of glasses (slag), spinels (alumina), and hydrates (cement aluminum hydrates). In particular, when rele-
vant, the use of the Czjzek model allows a quantitative decomposition of the spectra and an accurate
extraction of the second moment of the quadrupolar product. In this respect, it is important to realize that
only rotational invariants such as the quadrupolar product can make sense to describe the quadrupolar
interaction in disordered solids.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Solid-state nuclear magnetic resonance (NMR) of quadrupolar
nuclei has recently turned into a precise tool for structural analysis.
In many cases, the quadrupolar interaction can be measured with
good accuracy thanks to instrumental advances such as strong
radio frequency and static fields. At the same time, density func-
tional theory based computational methods can relate ab initio
the electrical field gradient (EFG), and in turn the quadrupolar
interaction, to structural data. In the best case scenario, one can
thus calculate the powder-averaged NMR spectrum for a proposed
structure and confront it with the experimental data. This situation
is very satisfactory and leads to solid conclusions as no empiricism
is at stake [1]. However, when studying materials which are not
perfectly ordered, the situation can be appreciably more complex.
The NMR response from an ensemble of resonating probe nuclei is
the superposition of the responses of all the possible environments
for the nuclei in the sample. So, if statistical disorder is significant
within the volume element contributing to the EFG at the nucleus,
the NMR spectrum results from a distribution of the quadrupolar
interaction parameters (which superimposes itself onto the usual
powder average). In toto, the powder NMR spectrum is the
summed contributions from all the nuclei experiencing different
quadrupolar interactions in randomly oriented crystallites. The
ll rights reserved.
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quadrupolar interactions are distributed in a manner which re-
flects the distribution of the EFG, which in turn is the expression
of structural disorder at the relevant scale. To be able to provide
a structural interpretation of the NMR spectra of disordered mate-
rials, it is thus necessary to formulate a probability density func-
tion (PDF) to describe the distribution of the parameters defining
the strength (tQ) and shape (g) of the quadrupolar interaction ten-
sor. This not so trivial problem of applied statistics (going from
spatial, or electronic, disorder to a distribution of the EFG and final-
ly to a distribution of quadrupolar parameters) was solved at the
beginning of the eighties by Czjzek within the context of Moss-
bauer spectroscopy [2] and later successfully applied to Electron
Spin Resonance and Perturbed Angular Correlations technique in
glasses [3–6] and alloys [7,8]. It has been, however, only recently
that several authors have advocated the use of the Czjzek model
for the analysis of the magic angle spinning (MAS) NMR spectra
of disordered materials, glasses [9–12] and spinel-type solids
[13]. In particular, it was very recently implemented in a free
and widely distributed NMR simulation software [14].

In this article, considering the growing importance of the Czjzek
lineshape within the NMR community, we will attempt to clarify
the arguments underlying the derivation and use of the Czjzek
model. For that purpose, we will first review and evaluate existing
approaches to the issue of the distribution of quadrupolar param-
eters in NMR. Then we will present in detail the joint probability
density function (PDF) of the quadrupolar parameters derived
by Czjzek, explaining its physical significance and practical

mailto:Jean-Baptiste.dEspinose@espci.fr
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr


Fig. 1. One-pulse 27Al MAS NMR spectrum of a slag sample. The Czjzek model
(dashed line) is well adapted to the description of the experimental spectrum (noisy
solid line). The spectrum is interpreted as resulting from a single tetrahedral env-
ironment distributed according to diso = 72.7 ppm and r = 467 kHz. The latter value

corresponds to, see Eq. (7), a root mean square quadrupolar product
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Qg

D Er
of

6.96 MHz.
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consequences for NMR. In particular, we will assess its experimen-
tal validity on non-glassy disordered materials. Finally, we will
illustrate on a cement sample the potential of the Czjzek model
for a quantitative analysis of the spectra of multiphasic ill-crystal-
lized samples.

2. Distribution of quadrupolar parameters

It is an experimental fact that structural disorder results in a
distribution of quadrupolar parameters and non-zero quadrupolar
coupling even for nuclei in environments of high local symmetry.
Hence, for example, the occurrence of a measurable quadrupolar
effect on the 87Sr resonance in SrCl2 [15]. This is the expression
of the non-locality of the quadrupolar interaction: Considering so-
lely the orbitals centered at the nucleus is not sufficient for an
accurate determination of the EFG. Although the EFG, that is the
non-spherical distribution of charges around the nucleus, is largely
determined by valence electrons and first-shell chemical bonding,
the ‘‘exterior”, or ‘‘crystal”, orbitals have also to be taken into ac-
count. Structural disorder at the scale of two to three atomic posi-
tions around the probe nucleus results in variations of the EFG and
thus in a distribution of the quadrupolar interaction. Due to limited
computational time, the usual model clusters employed to calcu-
late ab initio the EFG extend rarely beyond the third coordination
sphere of the probe nucleus. Nevertheless, crystalline distortions
well beyond that range have indeed been predicted to have a sig-
nificant cumulative effect on the EFG [16–18].

Regarding the chemical shift, structural imperfections are com-
monly assumed empirically to result in a Gaussian broadening
(although this assumption might not be strictly and generally
founded [19,20]). By analogy, the same approach could be taken
to account for the effect of disorder on the quadrupolar interaction.
However, a Gaussian broadening of the quadrupolar lineshape
does not reproduce the asymmetric quadrupolar lineshape often
observed in disordered materials (see Fig. 1 for example). The ori-
gin of a lineshape tailing toward high fields is understandable, con-
sidering that to second-order, the quadrupolar interaction results
in a high field shift and therefore in an unidirectional broadening
of the powder spectrum proportional to the strength of the inter-
action. If this strength is distributed, the resulting lineshape neces-
sarily tails in that direction. The Czjzek model allows us to go
beyond this pictorial representation and to provide an analytical
expression for the lineshape.
2.1. NMR resonance of a quadrupolar nucleus

Let us first formalize the problem. The quadrupolar interaction
Hamiltonian expresses the coupling of a nucleus of spin I and elec-
tric quadrupole moment Q with an electric field gradient tensor V
(whose elements are the partial derivatives of the potential)
through

HQ ¼
eQ

2Ið2I � 1Þh

� �b~I � V � b~I ð1Þ

where e is the elementary charge and h the Plank’s constant. Any
physical manifestation of this coupling will thus depend on the nine
Vik elements of the 3 � 3 V matrix. These elements originate from
the additive contribution of a number of structural elements which
are each described by a set of independent parameters. Thus, for
example, the independent parameters could be, but are not re-
stricted to, the coordinates of all the atoms needed to describe
the local structure needed to compute the EFG. The number of
structural variables involved is thus potentially very large. Never-
theless, the EFG being constrained by the Laplace equation impos-
ing symmetry and vanishing trace, only five independent
variables are actually needed to describe the nine Vik terms of the
EFG matrix. Several sets of variables can be chosen, but it is custom-
ary in NMR to describe the quadrupolar interaction through the so-
called quadrupolar parameters

XQ ¼ mQ ; g; a; b; cð Þ

defined relatively to the diagonalized EFG through

mQ ¼
3eQ

2Ið2I � 1Þh VZZ and g ¼ VXX � VYY

VZZ
ð2Þ

where jVXXj 6 jVYYj 6 jVZZj are the three sorted eigenvalues of the
EFG (a, b, and c being the Euler angles defining the corresponding
principal axis system).

Finally, from the set of five quadrupolar parameters XQ, the ef-
fect of the quadrupolar interaction on the MAS NMR spectra can be
computed. For example, the frequency of the central transition
associated with the quadrupolar interaction treated as a second-
order perturbation of the Zeeman is given to by

mðXQ Þ ¼
m2

Q

m0
IðI þ 1Þ � 3

4

� � !
� 1

30
1þ g2

3

� �
þ 1

360
f1ða; bÞ

� �
ð3Þ

where f1(a,b) is given in Ref. [21] and m0 is the Larmor frequency.
Note that f1 is independent from c. The physical response for a sin-
gle nucleus experiencing a quadrupolar interaction of parameters
XQ is thus formally represented by a response function which is
simply a Dirac delta function (neglecting any residual linewidth)

sðm; XQ Þ � d½m� mðXQ Þ�

For an ensemble of nuclei experiencing different quadrupolar
interactions, the spectrum is the sum of all the individual re-
sponses of each nucleus or, equivalently, the sum of each possible
response weighted by the number of nuclei experiencing the corre-
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sponding quadrupolar interaction (eventually further weighted by
the radio frequency excitation profile but we will not consider this
in our discussion)

SðmÞ �
Xall nuclei

n

dn½m� mðXQnÞ� ¼
Xall different environments

i

NiðXQiÞdi½m� mðXQiÞ�

In a disordered sample, due to the residual linewidth and to the
large number of the randomly distributed environments, the quad-
rupolar parameters XQ can be considered random variables and the
PDF of XQ substitutes to N(XQ). We can thus write the formal
expression of the full spectrum as the average of the response func-
tion whose arguments are the quadrupolar random variables XQ

[22]

SðmÞ �
Z

pXQ
ðXQ Þd½m� mðXQ Þ�dXQ

For the MAS NMR spectrum of a randomly oriented powder,
considering that there is no correlation between the orientation
of the EFG and its eigenvalues,

pXQ
ðXQ Þ ¼ panglesða; b; cÞpQ ðmQ ; gÞ ¼

1
8p2 pQ ðmQ ; gÞ

where 1/8p2 is the constant PDF of the angles random variables and
pQ the PDF of the remaining random variables (mQ, g). One thus gets

SðmÞ �
Z þ1

�1

Z 1

0
pQ ðmQ ; gÞ

Z 2p

0

Z 2p

0

Z p

0

�
� 1

8p2 d½m� mðXQ Þ� sin bdbdadc

�
dgdmQ ð4Þ

Thus the spectrum results from two successive summations.
The first summation, over all possible orientations of the EFG, is
the well-known powder average for given values of (mQ,g). There
is no analytical solution to the corresponding integral, and the
powder lineshape is commonly generated by numerical sampling
of the angles [14]. The second summation is the weighted average
of the powder lineshapes over all possible (mQ,g). Finally, m(XQ)
being independent from c, the Eq. (4) can be simplified as

SðmÞ �
Z þ1

�1

Z 1

0
pQ ðmQ ; gÞ

� 1
4p

Z 2p

0

Z p

0
d½m� mðXQ Þ� sin bdbda

� �
dgdmQ ð5Þ

This formalism leads us to the necessary conclusion, already
stated in the introduction, that the issue of modeling and under-
standing the quadrupolar spectrum of disordered materials is re-
duced to the one of finding the joint PDF of the quadrupolar
parameters pQ(mQ,g). Although it can be performed numerically by
numerical molecular dynamics simulations [23], the random char-
acter of the structures under consideration opens, as we will see,
the possibility to derive an analytical expression of the PDF
through the applied statistics formalism.

2.2. The Czjzek model

Two tempting simplifications could be implemented. First,
one could distribute the quadrupolar parameters tQ and g with
independent normal PDFs. And second, their distributions could
be taken as Gaussians. Albeit easy to implement, these ap-
proaches are unfortunately not physically founded. In the first
place, there is no justification for the choice of independently
distributing tQ and g. Indeed, the electronic structure around
the nucleus is a reflexion of its bonding environment, and it is
hard to conceive a situation where a distortion of the electronic
structure would impact an eigenvalue along one principal axis
and not the eigenvalues along the ones in the perpendicular
plane. In other words, the modification of tQ must be associated
with a modification of g. Those two variables are not indepen-
dent. In the second place, the distributions cannot be considered
Gaussians. Indeed, the Central Limit Theorem, which founds the
use of a normal distribution does not apply to the quadrupolar
parameters. The reason is that the structural parameters do
not contribute in an additive manner to the quadrupolar param-
eters since they derive from eigenvalues.

On the other hand, the structural parameters do have an
additive contribution to the tensor elements of the EFG. The Cen-
tral Limit Theorem thus applies to the elements of the EFG, and
they can consequently be predicted to tend toward a normal dis-
tribution. Indeed, Jaeger et al. [24,25], following Meinhold et al.
[26], have numerically constructed discrete distributions of tQ

from normal distributions of the EFG tensor elements with the
constraints necessary to impose symmetry and tracelessness on
the EFG. The value of g is fixed but considered as an adjustable
parameter. Although this numerical approach still treats disjoint-
ly g and tQ, this drawback is tempered by the fact that the
resulting lineshape does not depend strongly on g. Others have
also followed the approach of Meinhold but, from the distribu-
tion of the EFG, they produced a numerical distribution of pairs
of g and tQ [27]. These two methods are physically sound but do
not provide an analytical expression for the PDFs of g and tQ,
and the discussion of the structural information content of the
NMR spectrum is consequently limited. For this reason, Hoatson
[28] has advocated for the use of Gaussian distributions of g and
tQ. The rational is that, although not physically justified, they do
produce empirical lineshapes very similar to the experimental
ones while, since the mean and variance of the traditional quad-
rupolar parameters g and tQ are directly adjusted, the results are
more conveniently interpreted in terms of structural disorder. As
we shall see, this argument is debatable as the Czjzek model
precisely calls into question the very existence of g and tQ as
pertinent physical descriptor of disordered materials.

Using random variable theory, Czjzek proposes the following
joint PDF (see the annex for the essential steps of its derivation)

pQ ðmQ ; gÞ ¼
1ffiffiffiffiffiffi

2p
p

r5
m4

Qg 1� g2

9

� �
exp �

m2
Q 1þ g2

3

	 

2r2

24 35 ð6Þ

where the parameter r is the width of the distribution of the ele-
ments of EFG.

2.3. Consequences of the Czjzek model

An essential feature of this expression is that the PDF depends
on a single parameter r which will determine the shape of the
distribution and ipso-facto of the MAS NMR line. It relates to
the second moment of the quadrupolar product (proportional to
the norm of the EFG) through

C2
Qg

D E
¼ 2

3
Ið2I � 1Þ

� �2

m2
Q 1þ g2=3
� �D E

¼ 2
3

Ið2I � 1Þ
� �2

5r2 ð7Þ

In order to assess the applicability of this PDF for the purpose of
the solid-state NMR of quadrupolar nuclei, we recall below the
assumptions which underlie its derivation:

(i) the structural elements contribute additively to the EFG
(ii) the sets of random variables defining the structural elements

constitute independent random variables
(iii) the number of structural elements contributing to the EFG is

‘‘sufficiently” large
(iv) the ensemble of structural elements responsible for the EFG

constitute a statistically isotropic solid.
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The first three points insure that by virtue of the Central Limit The-
orem, the EFG tensor elements each approach a multivariate nor-
mal distribution, while the fourth point insures that the EFG
tensor elements are identically distributed. Point (i) does not call
for any restriction but points (ii) and (iv) restrict it to matter not
ordered at a scale exceeding the range of the quadrupolar interac-
tion (or, incidentally, at a scale orders of magnitude larger than the
quadrupolar range [29]). However, this does not imply any restric-
tion in terms of local order. Obviously, if statistical isotropy meant
an isotropic environment for the nucleus, the EFG would be non-
existent, and there would be no quadrupolar interaction in disor-
dered materials. The most restrictive point actually appears to be
point (iii) which implies a sufficient number of contributing neigh-
bors. This means that, for a given number of contributing coordina-
tion shells, a ‘‘large enough” coordination number is required. How
‘‘large” is ‘‘enough” for the PDF of the EFG tensor elements to be
approximated by a normal distribution is difficult to rationalize.
Our experience is that it requires a coordination of four or more
for the probe nuclei. This unfortunately excludes de facto the
important case of 17O NMR in oxide glasses.
Fig. 2. 27Al one-pulse MAS NMR spectrum of c-alumina. Although the fit (dashed
line) is not as perfect as in the glass sample (Fig. 1), the model is still satisfactory.
The spectrum is interpreted as the sum of two Czjzek contributions in a 2:1 ratio
corresponding to the ideal ratio of tetrahedral (diso = 73.8 ppm and r = 405 kHz) to
octahedral aluminum (diso = 13.8 ppm and r = 340 kHz) in the spinel structure.
3. Experimental validation and use of the Czjzek model

Glassy materials are subject of choice for applying the Czjzek
model. In particular, one of us was able to refine the local structure
of calcium aluminosilicate glasses by modeling their 27Al NMR
spectra using the Czjzek approach [30]. As a further example, we
present here the spectrum of a quenched molten slag (the low-
density melt residue obtained during the production of pig iron).
This slag is actually a calcium aluminosilicate glass with a ratio
R = CaO/Al2O3 of 4. It can thus be considered as a percalcic glass
with intermediate silica content (30% SiO2). Its 27Al MAS NMR
powder spectrum is a near perfect match for the Czjzek model with
an isotropic chemical shift of 72.7 ppm and an adjustable parame-
ter r of 467 kHz (Fig. 1). The corresponding value for the root mean
square quadrupolar product (Eq. (7)) of 6.96 MHz is very close to
the average quadrupolar product measured by MQMAS on syn-
thetic percalcic aluminosilicates [30], and the chemical shift is ex-
actly what could be predicted from the known linear dependency
of the chemical shift of tetrahedral aluminum on the silica content
in aluminosilicate glasses [11]. Furthermore, the fact that only one
Czjzek lineshape was needed to model the spectrum reveals that
only one type of coordination was present despite the moderate
silica content and the high level of impurities (nearly 20% by
weight). In particular, thanks to the Czjzek model, unresolved five-
and sixfold coordination can be excluded with a high level of con-
fidence even though the resonance significantly tails toward chem-
ical shift ranges normally typical of these coordinations. In
summary, the modeling of the resonance by way of the Czjzek
PDF allows for a precise discussion of the structural information
content of the NMR spectra of glasses.

Apart from glasses, published applications of the Czjzek model
to date relate to the quantification of sites in defective spinel
structures [31]. Such materials constitute a good test for whether
or not its application must be restricted to truly amorphous or
glassy materials. For this reason, we now present and discuss
the 27Al one-pulse MAS NMR spectrum of c-alumina. Although
it presents only broad X-ray diffraction patterns (not shown), this
alumina polymorph is not amorphous in the sense that it has a
definite long-range defective spinel structure where short-range
order consists of octahedral and tetrahedral elementary units
[32]. Actually, the occurrence of five-coordinated aluminum can
be taken as a measure of medium-range disorder [33]. In this re-
spect, the spectrum of Fig. 2 shows no occurrence of a resonance
around 30 ppm indicative of the pentacoordination of aluminum,
and our sample can thus be considered well-structured. The
structural formula (corresponding to a sub-cell of 3/4 of the unit
cell) can be written as (h)2(AlVI)12�x(AlIV)6�yO24 where x + y = 2 is
the total number of cationic vacancies.These vacancies are dis-
tributed between the octahedral and tetrahedral cationic sites.
The total number of possible combinations per sub-cell is 153.
From DFT calculations, it has been shown that all combinations
are very close in energy and thus it is likely that a significant
number of them coexist at room temperature [34]. As a conse-
quence, despite the structured atomic arrangement, the distribu-
tion of vacancies results in a large number of possible
environments for each aluminum nucleus. This explains why
the spectral singularities of the quadrupolar lineshapes have dis-
appeared from the MAS NMR spectrum (Fig. 2). Here again, it
could be successfully decomposed in lineshapes following the
Czjzek model. The model of Czjzek thus appeared robust and
applicable to a wide range of disordered materials, well beyond
the case of ideal glasses.

4. Practical significance of the Czjzek model

First and foremost, the practical motivation for the use of Czjzek
model in the context of MAS NMR of quadrupolar nuclei is to pro-
vide a quadrupolar lineshape for disordered materials so as to be
able to decompose quantitatively and accurately their spectra.
After validating this approach on known samples, we now will
show on a complex multi-phase sample how, from a simple one-
pulse experiment, it can improve the quantitative analysis of the
NMR spectrum. This is exemplified in the case of the speciation
and quantification of the sulfo-aluminate hydrates in cement min-
eralogical assemblage.

Hydration of the calcium aluminates in anhydrous cement leads
to a mixture of trisulfo-aluminate, of monosulfo-aluminate and of



Table 1
Model parameters used to fit the 27Al MAS NMR spectrum of the hydrated cement
paste (Fig. 3)

dðisoÞ
CS � 0:1

ppm
Model r ± 10

kHz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

Qg

D Er
� 0:15

MHz

Amplitude ±2 (%)

13.2 ppm Lorentz 41 AFt
10.3 ppm Czjzek 118 kHz 1.76 MHz 30 AFm
6.5 ppm Czjzek 224 kHz 3.34 MHz 18 TAH
��10 ppm 11 Unassigned

248 J.-B. d’Espinose de Lacaillerie et al. / Journal of Magnetic Resonance 192 (2008) 244–251
an ill-defined amorphous aluminum hydrate. The need to identify
and quantify these species is driven by the fact that the mechanical
stability of cement depends in part from the stability of this min-
eral assemblage when exposed to external sources of sulfate ions
such as the ones found in the soil or in sea water. Such a quantita-
tive analysis of aluminum hydrates in cement is currently limited
and possible in part only through a Rietveld analysis of low angles
XRD patterns [35]. So far, MAS NMR was considered to fail for that
purpose precisely because of the quadrupolar character of 27Al and
of the disordered nature of the sample leading to broad overlap-
ping resonances which could not be separated due to their un-
known lineshapes. The use of Czjzek model has solved this issue
and allowed for an accurate quantification of these phases as seen
in Fig. 3 and Table 1. The isotropic chemical shifts are in line with
the literature for the considered phases. In trisulfo-aluminate, alu-
minum occurs in a highly symmetrical sixfold coordination [36].
Consequently, it experiences no EFG and no quadrupolar effects
and the corresponding lineshape is a simple Lorentzian. Monos-
ulfo-aluminate on the other hand is poorly crystallized and is thus
distributed according to the Czjzek model. TAH being a totally XRD
amorphous hydrate of unknown structure [37] is largely broad-
ened according to Czjzek’s PDF of quadrupolar parameters with a
value of r double the one of the more structured monosulfo-alumi-
nate. Actually, it might be interesting to discuss the small but sig-
nificant departure of the experimental lineshape at high field from
the Czjzek model (lower trace of Fig. 3). This deviation in itself car-
ried information obviously unreachable without using the Czjzek
model. It indicates either the existence of a fourth species or the
fact that the third aluminum hydrate is not truly amorphous (to
a smaller extent, the same observation could have been made for
the octahedral resonance in the spectrum of c-alumina). In this re-
spect, Le Caër has discussed numerically how a departure from
hypothesis (ii) (namely a remaining level of correlations between
the structural elements) affects the Czjzek lineshape [38]. He thus
defines the so-called degenerate model by empirically modifying
the exponent of r in Eq. (6). Although the degenerate model, by
introducing an empirical adjustable parameter (the exponent),
might allow a better fit of the lineshape, this result would be ob-
Fig. 3. Octahedral frequency range of the one-pulse 27Al MAS NMR spectrum of a
hydrated cement paste. The solid lines are the traces of the experimental spectrum
and of the fitted models of trisulfo-aluminate (AFt or Ettringite), monosulfo-alu-
minate (AFm or sulfate form of hydrocalumite) and the ‘‘third aluminum hydrate”
(TAH). The dotted line is the total modeled spectrum. The lower trace represents the
difference between the experimental and modeled spectra. No attempts are made
to model the pentahedral frequency range around 30 ppm. Model parameters are
given in Table 1.
tained at the expense of the physical meaning of the PDF. Again,
at this stage, it is safer to simply conclude that the third aluminum
hydrate is not truly amorphous.

5. Discussion

We have seen in the two preceding sections the strong practical
advantages of resorting to the Czjzek model. First, by comparing
the experimental spectrum to the Czjzek model, we can test if
the characteristics of the material correspond to the hypothesis
of the model, noticeably with respect to statistical isotropy and
persistent positional correlations within the solid. Second, once
the model is validated for the solid under consideration, we can
now decompose overlapping resonance and thus accurately quan-
tify crowded spectra. Although this is probably the main interest of
the Czjzek model, it is also interesting to note that it constitutes a
good support for discussing the information content of the MAS
NMR spectra of disordered solids.

In disordered solids, we can of course always obtain from a NMR
measurement the marginal distribution of the quadrupolar param-
eters. Within the Czjzek model, this could be accomplished by fit-
ting the experimental MAS NMR lineshape to a value of the
parameter r from which, for instance, the average value of g (Eq.
(14) of the annexe) and the root mean square of tQ (Eq. (15) of
the annex) could be calculated. However, the use of the Czjzek mod-
el showed that an analysis of the EFG in disordered solids in those
terms would not be necessarily the most relevant. This is particu-
larly clear for the averaged value of g which is constant in the Czjzek
model. Actually, its marginal distribution is not even parameterized
and thus evidently carries no structural information besides the fact
that the material obeys the prerequisite of the Czjzek model. In con-
clusion, it might be best for disordered solids to abandon a descrip-
tion of the NMR manifestation of the EFG in terms of g and tQ.

In disordered solids, statistical isotropy results in a drastic
reduction of the independent variables. A direct consequence is
the fact that the distributions of g and tQ are necessarily jointed.
Furthermore, only rotational invariants of the EFG could make
physical sense to describe the structure. In this respect, the Czjzek
model, allowing for the derivation of an analytical expression for
this joint PDF, provides a direct way to characterize a rotational
invariant, namely the norm of the EFG. Indeed, from Eq. (7), we
realize that the fitting parameter r stands physically, to a propor-
tionality constant, for the root of the second moment of the quad-
rupolar product, which is itself proportional to the norm of the
EFG. Lineshape fitting of the resonance by way of the PDF resulting
from the Czjzek model thus provides a simple and convenient
mean to extract the second moment of the quadrupolar product
from the NMR spectra.

Even without the help of the Czjzek model, it has long been real-
ized that only the second moment of the quadrupolar product
could be extracted from the shapeless resonance of quadrupolar
nuclei in disordered materials. For that purpose, the well-known
relationship between the mean square quadrupolar product and
the center of gravity of the resonance of quadrupolar nuclei was
used [39]
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This approach is more general since it is does not rely on the choice
of a PDF to calculate the mean square quadrupolar product but sim-
ply estimates it from the first moment of the resonance line. How-
ever, it suffers from two experimental drawbacks. First, it relies on
an integrated measurement of the resonance which makes it depen-
dent on the experimental frequency cut-off values and on the qual-
ity of the baseline. Second, making no assumption about the PDF, it
does not provide a model lineshape and consequently cannot sepa-
rate the contributions of overlapping resonances. Since it necessi-
tates the integration of the full lineshape, it is essentially limited
to fully resolved resonances.

On the contrary, the procedure derived from the Czjzek model
does not suffer from these limitations. Being based on a full line-
shape analysis, all data points must fit the model, allowing for a
greater degree of confidence, a sorting out of baseline distortions,
and an extrapolation to decompose overlapping resonances. Along
the same line, the fact that Czjzek modeling leads to a higher esti-
mate of the average quadrupolar coupling constant than MQMAS
has been noted in a recent study of alumosilicate melts [40]. This
was attributed to the difficulty to detect the broad contributions
associated with strong quadrupolar couplings and, thus, to a biased
determination of the position of the center of gravity of the MQ
resonance in the direct and indirect dimensions. We can complete
this statement by emphasizing that even when the high frequency
end of the spectrum is lost in the noise, Czjzek modeling permits,
all the same, to extract the root mean square quadrupolar product
from the spectrum simply by fitting the sharp apparent part of the
resonance (and making use of Eq. (7)).

6. Conclusion

In summary, the Czjzek model, being based solely on the Cen-
tral Limit Theorem and on statistical isotropy, appears to be appli-
cable to the NMR spectra of a wide range of disordered materials. It
remains, however, limited to quadrupolar nuclei with a coordina-
tion at least equal to four. Its interest lies in the fact that providing
a lineshape parametrized by the second moment of the quadrupo-
lar product, it allows a better estimate of the root mean square
quadrupolar product than other existing methods based on the
determination of the center of gravity of one-pulse or multiple-
coherence (MQMAS) resonances. Furthermore, the knowledge of
the lineshape allows for a safe quantitative decomposition of over-
lapping resonances and a test of their disordered character.
7. Experimental

7.1. MAS NMR

Magic angle spinning nuclear magnetic resonance (MAS NMR)
experiments were performed in 4 mm zirconia rotors on Bruker
ASX spectrometers at 7.05 T, 11.7 T (ESPCI, Paris) and Bruker DSX
spectrometers at 19.6 T (NHMFL, Tallahassee). 27Al one-pulse
experiments were performed spinning at 14 kHz with a selective
pulse (<p/6) duration of 0.5 ls, recycle time 1 s and between 300
and 200,000 acquisitions depending on the samples. According to
the static fields, the rf fields were 78.19, 130.31 and 216.13 MHz
at 7.02, 11.7 and 19.6 T, respectively.

7.2. Modeling

The experimental spectra are fitted to models using the free
DMfit software. The central transition is modeled by the Czjzek
model. When spinning side bands are present, the first satellite
transition and its first side bands are modeled using Lorentzian
lineshapes. The isotropic chemical shift is constrained to be identi-
cal for the central and satellite transitions.
7.3. Materials

Blast furnace slag sample (courtesy of Dr. Albert, Lafarge) from
Fos (France) is a glassy by-product of the steel industry. Typical
composition is 40% CaO, 30% SiO2, 10% Al2O3, and the rest being
MgO, FeO, and sulfides. c-Al2O3 is obtained by calcination 4 h at
773 K of boehmite supplied by Condea. Cement samples are class
G Portland cement hydrated with a water/cement ratio of 0.4 and
cured 30 days under room conditions.
Appendix A. Derivation of the Czjzek model

We will here briefly summarize the fundamental steps of the
derivation of the Czjzek model. A more thorough explanation can
be found in Ref. [38].

A.1. Disorder and distribution of quadrupolar parameters

We start from Eq. (5) which is justified in the text

SðmÞ�
Z þ1

�1

Z 1

0
pQ ðmQ ;gÞ

1
4p

Z 2p

0

Z p

0
d½m�mðXQ Þ� sinbdbda

� �
dgdmQ

with mðXQs Þ given by Eq. (3).
For materials disordered at a lower scale than the quadrupo-

lar range, it is thus evident that a lineshape analysis requires
knowledge of the joint PDF pQ(mQ,g) which in turn derives in
principle from the distribution of the structural parameters.
The latter distribution can vary and might actually be unknown;
but, as we will see later, an important point is that in many
physical systems allowing for a large number of degree of free-
dom, the structural parameters can be assumed to constitute
independent random variables of finite variance. The validity of
this assumption is essential to any statistical treatment of the
quadrupolar interaction as it justifies the use of the Central Limit
Theorem.

The Czjzek model’s first step: Central Limit Theorem and choice of a
representation of the EFG

As pointed out by Le Caër [38], the additivity of the phys-
ical contributions holds for the EFG tensor elements but not
for its eigenvalues. We cannot therefore make any a priori
assumption on the form of their PDF, nor on the one of the
quadrupolar parameters derived from them through Eq. (2). It
is therefore preferable to represent the EFG, not by the five
quadrupolar parameters but instead by five quantities depend-
ing linearly on the tensor elements. A natural choice is the five
non-zero irreducible spherical tensor elements (the four other
ones are null because of the zero trace and the symmetry of
the EFG tensor)

Vm
2 ;m ¼ 0;�1;�2

However, to facilitate the derivation of the joint PDF of the quadru-
polar parameters, Czjzek proposes to use instead their real equiva-
lents which evidently still preserve additivity

U0 ¼ V0
2

U1 ¼
1ffiffiffi
2
p ðV1

2 þ V�1
2 Þ

U2 ¼
1

i
ffiffiffi
2
p ðV1

2 � V�1
2 Þ
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From the Central Limit Theorem, we then know that regardless
of the actual PDF of the structural parameters, the joint PDF of the
Ui’s tends to a multivariate normal distribution for large numbers
of independent random structural parameters.

The Czjzek model’s second step: statistical isotropy.
Furthermore, electro-neutrality requires, through Laplace’s

equation, that their mean be zero. Also, statistical isotropy requires
the EFG tensor elements to be independently and identically dis-
tributed. Again, this latter proposition holds only for the Ui’s but
not for the eigenvalues of the EFG or, a fortiori, for the quadrupolar
parameters g and tQ.

In summary, assuming applicability of the CLT and statistical
isotropy we get the PDF of the EFG tensor elements and of the Uis:

PðU0;U1;U2;U3;U4Þ ¼
Y4

i¼0

PðUiÞ ¼
Y4

i¼0

1ffiffiffiffiffiffi
2p
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r
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2r2
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i¼0U2

i

2r2

 !

¼ 1
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exp � S

2r2

� �
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Consistently with our assumption of statistical isotropy, this PDF is
invariant by rotation since S is the square of the modulus of the EFG.
r2 relates thus to the second moment of the modulus. Within the
context of NMR, we also note that S verifies

S ¼
X

i¼x;y;z

X
j¼x;y;z

V2
ij ¼

X4

i¼0

U2
i ¼

3
2

V2
ZZ 1þ g2

3

� �
� C2

Qg ð11Þ

This means that to a proportionality constant, r2 must also relate to
the variance of the NMR quadrupolar product.

A.2. The Czjzek model’s third step: change of variables

The problem now reduces to a change of random variables to
obtain the joint PDF of g and tQ from Eqs. (2) and (10). For this pur-
pose, we use the functional determinant calculated by Czjzek

oðU0;U1;U2;U3;U4Þ
oðmQ ; g; a; b; cÞ





 



 ¼ 2 sin bV4
ZZg 1� g2

9

� �
ð12Þ

Thus, in summary, from the general Eqs. (2), (9) and (12) in the one
hand, and, on the other hand from Eq. (10) which assumes applica-
bility of the CLT and statistical isotropy, Czjzek makes a change of
random variables and derives the exact analytical form of the joint
PDF of quadrupolar parameters:

pQ ðmQ ; gÞ ¼
1ffiffiffiffiffiffi

2p
p

r5
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The expression of the parameter r, which as already stated relates
to the second moment of the norm of the EFG, will depend on the
original structural parameters PDF and thus of the particular model
of disorder under consideration.

The marginal distribution of g does not depend on r (and
cannot since it is dimensionless while r is not). This means that
characterizing the distribution of the asymmetry, for example
through its mean and variance, cannot carry any purpose other
than to check the applicability of the Czjzek model. So, it is
important to note that within the validity of the Czjzek model,
regardless of the value of r, the average tQ is zero and the aver-
age g is
hgi ¼ 2
ffiffiffi
3
p
� 3

ffiffiffi
3
p

2
lnð3Þ � 0:610 ð14Þ

This is not so far from the value of 0.5 sometimes proposed in the
literature for amorphous materials [28,41].

Incidentally, one can also note that the marginal distribution of
tQ does depend on r, and in particular that its variance is directly
proportional to r2:

m2
Q

D E
� hmQ i2 ¼ m2

Q

D E
¼ 7� 3=2

ffiffiffi
3
p	 


r2 � 4:40r2 ð15Þ
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